Option Pricing under Generalized Lévy Processes with State Dependent Parameters and the Volatility Surface
نویسنده
چکیده
This paper presents a very general option pricing formula incorporating both the Lévy process methodology and the level dependent volatility approach. An approximate solution to the pricing problem is obtained throughout the construction of a parametrix by means of the pseudo differential calculus. Some examples are provided to illustrate the comprehensiveness of the framework. Finally, the implications in terms of the volatility smile are discussed.
منابع مشابه
Pricing Foreign Equity Option with time-changed Lévy Process
In this paper we propose a general foreign equity option pricing framework that unifies the vast foreign equity option pricing literature and incorporates the stochastic volatility into foreign equity option pricing. Under our framework, the time-changed Lévy processes are used to model the underlying assets price of foreign equity option and the closed form pricing formula is obtained through ...
متن کاملOption pricing under the double stochastic volatility with double jump model
In this paper, we deal with the pricing of power options when the dynamics of the risky underling asset follows the double stochastic volatility with double jump model. We prove efficiency of our considered model by fast Fourier transform method, Monte Carlo simulation and numerical results using power call options i.e. Monte Carlo simulation and numerical results show that the fast Fourier tra...
متن کاملNumerical Algorithms for Pricing Discrete Variance and Volatility Derivatives under Time-changed Lévy Processes
We propose robust numerical algorithms for pricing discrete variance options and volatility swaps under general time-changed Lévy processes. Since analytic pricing formulas of these derivatives are not available, some of the earlier pricing methods use the quadratic variation approximation for the discrete realized variance. While this approximation works quite well for long-maturity options on...
متن کاملPricing bounds and approximations for discrete arithmetic Asian options under time-changed Lévy processes
We derive efficient and accurate analytical pricing bounds and approximations for discrete arithmetic Asian options under time-changed Lévy processes. We extend the conditioning variable approach to derive the lower bound on the Asian option price and construct a sharp upper bound based on the lower bound. We also consider the general partially exact and bounded (PEB) approximations, which incl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2013